
A system for Incremental Association rule mining without candidate generation

Archana Gupta1, Akhilesh Tiwari2 and Sanjeev Jain3

1. Research Scholar, Madhav Institute of Technology & Science, Gwalior (M.P.), India
Email: archana100gupta@gmail.com

2. Department of CSE & IT, Madhav Institute of Technology & Science, Gwalior (M.P.), India
Email: atiwari.mits@gmail.com

3. PDPM- Indian Institute of Information Technology, Design & Manufacturing, Jabalpur (M.P.),
India

Email: dr_sanjeevjain@yahoo.com

Abstract : Association rule mining can be used almost in all application for variety of purpose i.e. decision
making, finding correlation among the items, to control dependent parameters and many more. Many standard
algorithms work very well with respect to time and space complexity for the ARM. But if the transactional
database is incremental then these standard algorithms impose huge time and space complexity. Thus for the
incremental database some system is required which should not require the rescanning of existing database and
multiple scanning of incremental database. It is known from the starting that the tree based ARM algorithms
drastically reduce number of scans to the database and thus the time complexity. In this paper, a system is
shown for incremental ARM which is based on the tree based data structure and requires different steps to
generate association rules. The system consist of many phases from the phase 1 of taking input data to last phase
of generation of Association Rules.

1. Introduction:

One of the objectives of data mining is to find the patterns that are hidden in large amount of data and to retrieve
the related knowledge from the data for the analysis or improvement. Association Rule mining does not required
much explanations, there are many ARM algorithms, models and technologies available. Some of the methods
work very well for the static data such as Apriori Algorithm or FP tree algorithm which is based on tree based
data structure and reduces number of scan to the database. However, these datamining methods doesnot work
well with dynamicity in data. These algorithms cannot deal effectively and efficiently with the dataset that
consist of old data as well as new data or modified data.

This paper presents a system for Association Rule mining to support dynamic data. Association Rule Mining
works in two phase, first to find all the Frequent Itemsets and Second to generate Association Rules. Both
phases are controlled by external parameters Support and Confidence respectively. This is called an efficient
system as it handles dynamic data in all respect and converting the given input into some tree based
datastructure to improve the efficiency of the system and to reduce the overall complexity of the system in terms
of time and space. It also supports constraint mining.

Since input data is not getting used in its original form for the generation of frequent itemsets that’s why a
modules is added in the system to convert the given input in the COMVAN Tree []. To perform this conversion
it is required to preprocess the data to achieve the same thus a module of preprocessing is added before
conversion.

Since data is converted into COMVAN tree and all the required information is stored in tree only in different
forms , thus a special algorithm is required to extract frequent itemsets from the tree.

Once frequent itemsets are available, Association rules can be generated based on the available supports.

This system is capable enough to handle dynamicity in the input data. Data can be updated, inserted and deleted
easily from the system without any requirement of rescanning the old data unlike Apriori Algorithm and FP tree
Algorithm for the ARM.

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 17, No. 7, July 2019

63 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

The rest of the paper is organized as follows: section 2 gives the previous work done by different researcher in
the field of association rule mining, section 3 gives the system proposed for incremental association rule
mining, section 4 gives the detailed working of the system with respect to all the stages, the system will be
finally concluded in section 5.

2. Literature survey:

Rakesh Agrawal et al. [1] introduces the problem of mining a large collection of basket data This paper
introduces the problem of mining a large collection of basket data type transactions for association rules
between sets of items with some minimum specified confidence, and presents an efficient algorithm for this
purpose. An example of such an association ruleis the statement that 90% of transactions that purchase bread
and butter also purchase milk. The antecedent of this rule consists of bread and butter and the consequent
consists of milk alone. The number 90% is the confidence factor of the rule. This paper focuses on the problem
of mining association rules between sets of items in a large database of customer transactions. Each transaction
consists of items purchased by a customer in a visit. This work is to find the association based on the minimum
support value and minimum confidence value.

Rakesh Agrawal et al. [3], considered the problem of discovering association rules between items in a large
database of sales transactions. We present two new algorithms for solving this problem that are fundamentally
dierent from the known algorithms. Empirical evaluation shows that these algorithms outperform the known
algorithms by factors ranging from three for small problems to more than an order of magnitude for large
problems. We also show how the best features of the two proposed algorithms can be combined into a hybrid
algorithm called AprioriHybrid Scale up experiments show that AprioriHybrid scales linearly with the number
of transactions. AprioriHybrid also has excellent scaleup properties with respect to the transaction size and the
number of items in the database.

Jiawei Han et al. [8] proposed a novel frequent-pattern tree (FP-tree) structure, which is an extended prefix-tree
structure for storing compressed, crucial information about frequent patterns, and develop an efficient FP-tree
based mining method, FP-growth, for mining the complete set of frequent patterns by pattern fragment growth.
Efficiency of mining is achieved with three techniques: (1) a large database is compressed into a condensed,
smaller data structure, FP-tree which avoids costly, repeated database scans, (2) our FP-tree-based mining
adopts a pattern-fragment growth method to avoid the costly generation of a large number of candidate sets, and
(3) a partitioning-based, divide-and-conquer method isused to decompose the mining task into asset of smaller
tasks for mining confined patterns in conditional databases, which dramatically reduces the search space. This
study shows that the FP-growth method is efficient and scalable for mining both long and short frequent
patterns, and is about an order of magnitude faster than the Apriori algorithm and also faster than some recently
reported new frequent-pattern mining methods.

C. I. Ezeife Et al. [12] In this paper DB Tree is proposed which is a generalized form of FP Tree. It stores all
items in the database as well as frequency count of all items in decreasing order of support. It is constructed in
the same way as FP Tree except it includes all items instead of only frequent 1-iutemsets as in the FP Tree.
Same as FP Tree, it needs exactly two scan of the transactional database to construct DB Tree. It will have more
nodes as compare to the FP Tree as it includes all item of the transactional database irrespective of their count. It
can be consider as special FP Tree with support = 0. Then also DB Tree is much compact then the original
database because many transactions share the common path in the DB Tree.

Carson Kai-Sang Leung et al. [13] In this paper, a novel tree structure, called CanTree (Canonical-order Tree) is
proposed, that captures the content of the transaction database and orders tree nodes according to some
canonical order. By exploiting its nice properties, the CanTree can be easily maintained when database
transactions are inserted, deleted, and/or modified. For example, the CanTree does not require adjustment,
merging, and/or splitting of tree nodes during maintenance. No rescan of the entire updated database or
reconstruction of a new tree is needed for incremental updating. Since its introduction, frequent-pattern mining
has been the subject of numerous studies, including incremental updating. Many existing incremental mining
algorithms are Apriori-based, which are not easily adoptable to FP-tree based frequent-pattern mining. The

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 17, No. 7, July 2019

64 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

construction of the CAN tree requires only one scanning of the transaction database unlike FP-Tree
constructions where two scanning of database are required. In CAN tree constructions, all items in the
transactions must be arranged in some canonical order, which is determined by the user prior to the mining
process.

William Cheung et al. [14] In this paper, a novel data structure called CATS Tree is proposed. CATS Tree
extends the idea of FP Tree to improve storage compression and allow frequent pattern mining without
generation of candidate itemsets. The proposed algorithms enable frequent pattern mining with different
supports without rebuilding the tree structure. There are many advantages of CATS Tree algorithms over the
existing algorithms. 1) Once a CATS Tree is built, frequent pattern mining with different supports can be
performed without rebuilding the tree. The benefit of “build once, mine many” increases with the number of
frequent patterns mining performed, i.e., interactive mining with different supports; the cost of CATS Tree
construction is amortized over multiple frequent patterns mining. 2) CATS Tree allows single pass frequent
pattern mining. 3) CATS Tree algorithms allow addition and deletion of transactions in the finest granularity,
i.e., a single transaction.

3. Proposed System:

In the proposed system, initially data preprocessing is done to fulfil the requirement of application on of the
system. COMVAN tree is used to store the database and its required information such as count, itemsets, etc.
The proposed system is a complete model to generate association rules for the incremental data. This system is
efficient to handle increment data. There is no loss of data while converting the database into COMVAN tree.
After getting frequent itemsets based on the given support, this system is capable of deriving association rules.

3.1 Architecture Diagram:

The architectural diagram of the proposed system is as below:

Take initial input Preprocess the input

Covert the input in some tree
based data structure

Store information in tree

Frequent itemset mining

Generate association rules

Insert

Increment the
data Delete

Update

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 17, No. 7, July 2019

65 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

3.2 List of Modules:
• Data preprocessing
• COMVAN tree Generation
• Reflect the hidden information of the datasets
• Apply FEEPAMT algorithm for Frequent itemset generation
• Deriving association Rules
• Handling of Increment data

4. COMVAN : tree based data structure:

COMVAN tree construction is explained in detail in []. It is a tree based data structure that is dependent on the
order of items that are defined prior to the construction of tree. COMVAN tree has many feature that are given
as below:

a. Initially Root will point to the first item in the first record..

b. Associated with every node in the tree, a list of values is there. A value at a particular position k
represents the total number of records in which that item is at (n-k+1)thposition where n is the level at
which that node is present in the tree.

c. Every next item in the record will be added as a child of the preceding item in the record.

d. If the item is already there in the children of the preceding node then no new node will be added, only
the corresponding value in the list will get increment by 1.

e. If the first item of the record is not in the children of the root, then it will search for the first item in the
tree using DFS. Once item is found in the tree, then it will follow the same procedure to enter the
record in the tree. If that item is not found in the tree then it will be added as a child of the root.

f. The length of the list associated with every node will depend on the level of the tree at which that node
is located.

4.1 COMVAN Algorithm:

Algorithm : COMVAN Tree Builder

Input : Transactional Database, lexicographic order of the items given by order[].

Output :COMVAN Tree structure

while (end of the database)
{
read one record of n itemset at a time;
separate all items of the record , given by tupleitem[]
//items are arranged as per predefined order

If TupleItem [1] is at order[1] then
{
search for the TupleItem[1] at level 1;

If it is available at level 1 then

Update list corresponding to item;
Else
{

Add a child node to the root with name TupleItem[1];
update list;

}
 }

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 17, No. 7, July 2019

66 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

Else
{
search in tree for TupleItem[1] using DFS till level r, where TupleItem[1] is at order r,
if it is at level f then

update the corresponding value in list of that node;

Else

Add a child node to the root with name TupleItem[1];
Update its list value;

}
For k = 2 to n
{
If (TupleItem[k] is in the children of TupleItem[k-1]) then

Update corresponding list value
 Else
 Create a child node of TupleItem[k-1] with label TupleItem[k]
 Update corresponding list value;

 }
}

4.2 Example dataset:

Following dataset of movies genres is considered to explain the working of the system:

movieId Title genres
1 Toy Story (1995) Drama Animation Children Comedy Fantasy
2 Jumanji (1995) Adventure Children Fantasy
3 Grumpier Old Men (1995) Comedy Romance
4 Waiting to Exhale (1995) Comedy Drama Romance
5 Father of the Bride Part II (1995) Comedy
6 Heat (1995) Action Crime Thriller
7 Sabrina (1995) Comedy Romance
8 Tom and Huck (1995) Adventure Children
9 Sudden Death (1995) Action
10 GoldenEye (1995) Action Adventure Thriller
11 American President, The (1995) Comedy Drama Romance
12 Dracula: Dead and Loving It (1995) Comedy Horror
13 Balto (1995) Adventure Animation Children
14 Nixon (1995) Drama
15 Cutthroat Island (1995) Action Adventure Romance
16 Casino (1995) Crime Drama
17 Sense and Sensibility (1995) Drama Romance
18 Four Rooms (1995) Comedy

19
Ace Ventura: When Nature Calls
(1995) Comedy

20 Money Train (1995) Action Comedy Crime Drama Thriller
21 Money Train (1998) Action Comedy Crime Drama Thriller

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 17, No. 7, July 2019

67 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

4.3 COMVAN Tree:

After considering the genres Action, Comedy, Crime, Drama in this order only, resultant COMVAN tree is:

5. Modules Description:

5.1 Data preprocessing

During pre-processing of the data arrange all the dataitems in every transaction in the order taken as input

during phase 1. That order matters while generation of tree based data structure. And that order is one of the

important components that controls the entire working of the system.

Consider the Example database given in section 4.2 and the same order that was used to generate COMVAN

tree.

Result after preprocessing is:

genres
Comedy Drama
Comedy
Comedy Drama
Comedy
Action Crime Drama

Root

Comedy
[9]

Drama
[5,2]

Crime
[1,0]

Action
[6]

Crime
[2,1]

Drama
[1,1,0]

Drama
[1,0]

Comedy
[3,0]

Drama
[1,0,0]

Crime
[2,0,0]

Drama
[2,0,0,0]

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 17, No. 7, July 2019

68 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

Comedy Drama
Action Drama
Action Crime
Comedy Drama
Comedy
Drama
Action Comedy Drama
Crime Drama
Drama
Comedy Crime
Comedy Drama
Action Comedy Crime Drama
Action Comedy Crime Drama

5.2 COMVAN Tree generation

It is explained in detail in section 4. The database considered in section 4 is after preprocessing and the result of
data preprocessing is shown in section 5.1.

5.3 Reflecting hidden information of database:

All the itemsets along with their frequency count is stored in COMVAN tree in the form list, set of values
attached with every nodes.

5.4 Generate frequent itemsets using FEEPAMT

Unlike FP-Tree, once the COMVAN tree is constructed, it can be mined repeatedly for frequent patterns with

different support threshold without any need to rebuild the tree. perform constraint mining can be performed

very easily here by using COMVAN Tree. In this FEEPAMT algorithm, initially all the itemsets are generated

from the COMVAN tree with their respective support and then it is pruned to generate frequent itemsets based

on the minimum threshold.

Algorithm : FEEPAMT(σ)

Input : a COMVAN Tree and required support

Output: a set of frequent itemset

// Initially control will be at root

{

First = (Root, 0 , 0)

//where Root is list of items

Add First in Openlist

While Openlist != Null

{

Take First entry of Openlist ;

Traverse in COMVAN tree till leaves to get the itemsets and its frequency count;

Let k is the level of the first item of the itemset found.

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 17, No. 7, July 2019

69 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

If for any node say N, its list value for the positions >=k is not null then

New enteries will be made in Openlist;

}

// calculate actual support of the frequent itemset

While all entries not marked done

{

Pick first unmarked entry from Candidateset given by (X,Y,Z);

Search for X in the remaining enteries of Candidateset given by (A,B,C);

If X is not prefix of A but present in A then

Support of both enteries will be added to give the support of X;

}

// Find actual Frequent Itemsets

For all enteries (X,N) in Frequencylist apply check on N with respect to σ and find the

frequent itemsets.

}

Frequent itemsets generated for the example dataset for σ=10% is shown below:

5.5 Generate association rules

Association rules will get generate from the generated set of frequent itemsets and confidence of the rule is
calculated by using the simple concept of mining of Association rules.

For the example dataset following association rules are generated along with their confidence:

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 17, No. 7, July 2019

70 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

6. Increment the data:

In this phase, new data can be appended in the old database through a file or by giving one transaction at a time
as input. And this new transaction will get stored in the COMVAN tree without any need of rescanning the
entire database.

In addition of the insertion of new transactions, this system supports deletion of some transaction as well as
updation of some transaction.

During deletion, a transaction will get delete from the database, thus the respective count will get decrement by
1 as result.

During updation a transaction is getting modified, since COMVAN tree is not maintaining transaction id thus
updation should delete the old association and add the new association based on the updated transaction.

7. Conclusion:

In this paper, a system is proposed for Association rule mining based on an efficient tree base data structure to
support incremental data. COMVAN tree representation of the transactional database reduces number of
scanning to the transactional database and hence reduces complexity drastically. COMVAN [15] representation
of database is efficient with respect to time and space than many other tree based Data Structures proposed by
different Researchers[8,1011,12,14]. This system starts with data preprocessing and during data processing
number of items that needs to be consider, name of the items and order of the items can be decided.

References:

1. Agrawal, R., Imielinski, T. and Swami, A. “Mining Association Rules between Sets of Items in Large
Database”. Proceedings of the ACM SIGMOD conference on management of data, Washington, D.C,
May 26-28, 1993.

2. M. Houtsma and A. Swami. “Set-oriented mining of association rules”. Research report RJ 9567, IBM
Almaden Research Center, San Jose, California, October 1993.

3. Agrawal R and Srikant, R., “Fast algorithms for mining association rules”, Proceedings of the 1994 Int.
Conf. Very Large Data Bases, pp. 487-499, Santiago, Chile, September 1994.

4. Savasere A., E. Omieccinski and S. Navathe, “ An efficient algorithm for mining association rules in
large database”. Proceeding of the 21st International Conference on very large database, Zurich,
Switzerland, Sept 11 – 15 , pp 432-443.

5. Brin, S. R. Motwani, J. D. Ullman and S. Tsur, “ Dynamic Itemset Counting & Inplication rules for
market basket data”. Proceedings of the ACM SIGMOID Int. Conf. Manage Data, vol. 6(2) 1997, 26:
255-264.

6. Toivonen H., “Sampling Large database for Association Rules”. Proceedings of the 22nd International
Conference on very large database, Bombay, India, Sept 3–6, 1996 pp 134-145.

7. Siddharth Shah, N. C. Chauhan, S. D. Bhanderi, “Incremental Mining of Association Rules: A
Survey”. Proceedings of the International Journal of Computer Science and Information Technologies,
Vol. 3 (3) , 2012, pp 4071-4074.

8. Han J., J, Pei, Y. Yin and R. Mao”, “ Mining frequent patterns without candidate generation: A
frequent pattern tree approach”. Proceedings of the Data Mining Knowledge Discovery, 2004, 8 : 52-
87.

9. D. Cheung, J. Han, V. Ng, and C. Y. Wong. “Large Databases: An Incremental Updating Technique”.
Proceedings of the 12th International Conference on Data Engineering, February 1996, pp 106—114.

10. D. Cheung, S. D. Lee, and B. Kao. “A General Incremental Technique for updating Discovered
Association Rules”. Proceedings of the Fifth International Conference On Database Systems for
Advanced Applications, April 1997, pp 185—194.

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 17, No. 7, July 2019

71 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

11. Chin-Chen Chang, Yu-Chang Li and Jung-San Lee, “ An Efficient Algorithm For Incremental Mining
of Association Rules”, Proceedings of the 15th International Workshop on Research Issues in Data
Engineering: Stream Data Mining and Applications (RIDE-SDMA’05), 2005.

12. C. I. Ezeife and Y. Su. “Mining Incremental Association Rules with Generalized FP-Tree”.
Proceedings of the 15th Canadian Conference on Artificial Intelligence, May 2002.

13. C. K. Leung, Q. I. Khan and T. Hoque. “CanTree: A Tree Structure for Efficient Incremental Mining of
Frequent Patterns”, Proceedings of the Fifth IEEE International Conference on Data Mining
(ICDM’05), 2005.

14. 19W. Cheung and O.R. Zaiane , “ incremental mining of frequent patterns without candidate
generation or support constraint”, Proceedings of IDEAS 2003, pp. 111-11.

15. Archana Gupta, Sanjeev Jain, Akhilesh Tiwari, “COMVAN: A Novel Data Structure for Storing Large

Database for Incremental Association Mining”, TECHNIA – International Journal of Computing

Science and Communication Technologies, VOL.9 NO. 2, January. 2017 (ISSN 0974-3375), pp 1110-

1113.

International Journal of Computer Science and Information Security (IJCSIS),
Vol. 17, No. 7, July 2019

72 https://sites.google.com/site/ijcsis/
ISSN 1947-5500

